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SYNOPSIS 

After a brief review of the s ta te-of- the-ar t  the problematics 
pertinent to  a discrete  element approach to  dynamic shel l  problems 
a r e  discussed. In the derivation of the discrete  element propert ies  
using unit displacement theorem, the stiffness coefficients of a square 
flat shell element a r e  developed by solving the differential equations of 
the theory of elasticity by finite difference methods.  Symmetry in the 
stiffness matrix has been achieved via virtual work of the edge forces .  
Monotonic convergence of the solution is a s su red  by satisfying the 
compatibility requirements  of s t r e s s e s  and displacements within the 
element a s  well as along the adjoining edges. The basically different 
convergence c r i t e r i a  of small vs .  large element solutions a r e  t reated.  
Expressing the a r b i t r a r y  (in space and time) loads by Four ie r  s e r i e s  
the differential equations of motions a r e  t ransformed into coupled 
algebraic equations well suited for  computer solution. 
of the f r e e  vibration a r e  obtained as eigenvalue solutions of the 
dynamical matrix. 

The frequencies 

The accuracy of the method is checked against 
known analytical solutions e 

t ion is outlined along with the a r e a s  of future r e sea rch ,  
The procedure for  automation of the solu- 
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I. INTRODUCTION 

The modern tendency in s t ruc tura l  engineering is character ized 
by the increased use  of shell s t ruc tures  because of their  inherent 
s t ructural ,  economical and other advantages. Where complete en-  
c losure is  required a s  in the case  of aerospace,  naval s t ruc tures ,  
p re s su re  vessels ,  etc.  , the use of shell  s t ruc tures  i s  mandatory, 
since their  remarkable  load carrying capacity originating f rom their  
three-dimensional load-carrying action permits  the use of l ighter, thus 
m o r e  economical s t ruc tures .  

The m o r e  effective use of shells i s  considerably hampered by 
the mathematical  d i f f i c i i l t i e s  inherent to the classical  shell  theories .  
Even in  the case  of static loads, solution of the differential equations of 
equilibrium and compatibility (except for  the most  e lementary c a s e s )  is  
too complex for the average designer.  These mathematical  difficulties 
increase  exponentially in  case of dynamic loading, non-symmetrical  
geometry, a rb i t r a ry  load distribution, a rb i t r a ry  boundary conditions, 
e tc .  , until they reach the point where the solution of the specific 
problem, for a l l  practical  purposes, i s  prohibitive o r  even impossible.  

On the other hand, in spite of these mathematical  difficulties, 
a great  need exists to rationally design modern aerospace,  civil and 
naval s t ruc tures  consisting of single and double curved shel ls  of a r b i -  
t r a r y  shape and boundary condition subjected to a rb i t r a ry  (in space and 
t ime ) dynamic loading. 

During recent yea r s  the development of high speed electronic 
computers coupled with improved ma t r ix  procedures made it possible 
to a t tack the s t ructural  dynamics problem of complex aerospace 
s t ruc tures  using discrete  elements of the continuum and t reat ing the 
complex s t ruc ture  a s  an assemblage of finite elements.  Although, a s  
is the case  in a l l  new developments, considerable fur ther  r e s e a r c h  
effort is required to solve all problems pertinent to d iscre te  element 
methods, it  a l ready can be stated that this relatively new method i s  
able to furnish satisfactory information regarding static and dynamic 
s t r e s s  distribution in complex s t ructures ,  where the application of the 
c lass ica l  theory of elasticity fa i ls  completely. 

The key to the solution of dynamic response of shells of a rb i -  
t r a r y  shape by d iscre te  element method is the development of suitable 
stiffness (or influence) coefficients of the shell elements,  which 
descr ibes  the elastic character is t ics  of the s t ructure  and ensures  
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monotonic convergence of the solution taking into account both the 
membrane and bending s t r e s s e s .  
s ea rch  described in  this report  was directed toward the development of 
such compatible st iffness coefficients for  square shel l  elements,  f i r s t  
disregarding the effect of curvature.  

Thus the basic objective of the r e -  

In spite of the fact that in recent yea r s  considerable effort has 
been reported in  the pertinent l i t e ra ture  concerning the development of 
stiffness coefficients for shell elements (see References),  a basically 
new approach has  been taken herein to avoid the known shortcomings of 
previous solutions. 
based on the use  of "large" discrete  elements vs.  small ones offering 
cnnsiderahle  economy coupled with high acciiracy has  heen d i n c i i n n e d .  

The economical advantage of the large element method is evident since 
i t  reduces the o rde r  of the stiffness ma t r ix  considerably, thus el imi-  
nating partially the problems inherent to operation with la rge  ma t r i ces  
result ing in savings in  the required computer operation t ime.  

Fur thermore ,  the possibility of a unique solution 

The second, equally important, objective was to outline the 
course  of fur ther  developments in the field of stiffness ma t r ix  solution 
of complex static and dynamic shell  problems. 

Considerable advantage of the d iscre te  element method based 
on stiffness method approach is i t s  versati l i ty on one hand, and i t s  
simplicity, on the other .  That is  to say that basically the same method 
can be used regard less  if the shell is  single o r  double curved (including 
negative Gaussian curvature) ,  isotropic o r  orthotropic, having variable 
thickness, and stiffness.  Though considerable r e sea rch  is required to 
determine the stiffness coefficients, this work should be done only 
once, since i ts  resul ts  a r e  reusable.  The same can be said about 
thermo s t r e s s  and non-linear s t r e s s  problems, etc.  4 

Fur thermore ,  the fact that the d iscre te  element approach uses  
methods famil iar  to s t ructural  engineers instead of those of specialized 
s t ruc tura l  r e sea rche r s ,  should not be overlooked in practical  applica- 
tion. Similarly, no new programing i s  required,  since standard pro-  
grams available a t  any computer center a r e  used underlying again the 
economy of the solution. 
possibility of complete automation of the procedure.  

This economy can be fur ther  expanded by the 

In order  t o  check the accuracy of the solution of the method 
presented, the resul ts  of various two and three  dimensional s t r e s s  
problems have been compared with available analytical solutions. 
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Simultaneously, the convergence of the finite element solution to the 
right solution has  been carefully established. 

Although attention has been concentrated on flat thin plate ele- 
ments ,  the consideration of the effect of curvature in  the d iscre te  
elements has been also briefly investigated. 

Arbi t rary,  in space and t ime, dynamic loads can be t reated by 
ma t r ix  approach with relative ease,  since assigning concentrated forces  
to the node points and expressing their  t ime dependency in the form of 
Fourier  s e r i e s  t ransforms the differential equation of motion into 
coupled algebraic equations which a r e  well suited for computer 
solution. The importance of thc u s c  of d-j-iixiiic.a:ly eqiiivdleilt I I l d s s  

matrix,  i f  high accuracy is required o r  i f  large element approach is 
used, has been established in this research .  
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11. BRIEF REVIEW O F  THE STATE-OF-THE-ART 

The classical  solutions of the dynamics of shells follow the 
well-traveled path outlined by Love5 and Fliigge. lJ Such solution, 
except in the simplest  case,  i s  prohibitive due to the mathematical  
difficulties involved. 

The finite difference method coupled with relaxation procedure 
provides a far m o r e  versat i le  method than the classical  solution, but 
in most  of the cases ,  the differential equations of motions of shel ls  of 
a rb i t r a ry  shape cannot be derived, thus the finite difference solution i s  
limited to c lassical  problems. 2J Fur the r  complications a r i s e  in con- 
sideration of a rb i t r a ry  boundary conditions such a s  partial  elastic 
supports, etc.  

7 

The energy methods in form of: 1 )  conservation of energy, 
2 )  virtual work, 3 )  minimum potential energy, and 4)  complimentary 
energy a r e  powerful tools, but they do not lend themselves to easy  
computer use.  a 

Hrennikoff9 replaced the continuous mater ia l  of e las t ic  body by 
a f r ame  work of b a r s  arranged to a definite pattern.  
Hrennikoff d i scre te  element solution was given by the invention of high 
speed electronic computers.  
placement method using stiffness ma t r ix  formulation (direct  stiffness 
method) is due to Turner ,  Clough and Martin, lo who replaced two and 
three  dimensional s t ruc tures  by a n  assemblage of plates and beams 
and of other basic s t ructural  elements.  

The impetus to 

Pioneering work i n  developing the d is -  

Argyris"  introduced the "force method, I '  which represents  the 
expansion of the classical  solution of statically indeterminate s t ruc -  
t u re s .  
paral le l  form.  

The stiffness and force method can be formulated in  completely 

The combination of above discussed d iscre te  element methods i s  
12 "the displacement ' '  method based on the use  of flexibility mat r ix .  

Among other things the argument in favor of the use of st iffness 
ma t r i ces  i s  that it saves  considerable amount of computing t ime and 
s torage allocation. 

Although d iscre te  element methods for solution of complex 
static and dynamic s t r e s s  problems require  considerable fur ther  
r e sea rch  efforts, they hold great promise for  economic solution of 
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complex s t r e s s  problems. One par t  of the improvements should come 
f r o m  introduction of m o r e  realist ic representation of the continuum by 
d iscre te  elements, while the other equally important improvement 
should come f rom computer designers  in the form of l a rge r  and m o r e  
powerful computers.  
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111. DISCRETE ELEMENT METHODS AND THEIR CONVERGENCE 
CRITERIA 

Matrix solutions of static and dynamic s t r e s s  problems require  
by their  nature the discretization of the continuum into finite number of 
elements.  
a t  the node points. 
common to a l l  discrete  element methods. 

The equilibrium and continuity of displacement a r e  expressed 
The representation of continua by discontinua i s  

The most  important finite element methods presently used a re :  

1. Displacement method using stiffness mat r ices  (direct  
stiffness method) 

2 .  

3 .  Force  method (Argyris)  

4. Method of t ransfer  ma t r i ces  

Displacement method using flexibility mat r ices  

5. Klein's method 

In a l l  of these methods the investigation of the convergence of the solu- 
tion to the co r rec t  value is of basic importance. 
deals  only with "direct stiffness method", the following discussion con- 
cerning convergence c r i t e r i a  i s  common to a l l  d i scre te  element 
methods. 

Although this report  

13, 14 

Mathematically, the discrete  element representation of con- 
tinuum in the l inear elastic range, strongly resembles  the "Ritz 
method" used in  solution of various s t r e s s  problems i n  the theory of 
elasticity,  i .  e . ,  the t rue  displacement state of the s t ruc ture  i s  
represented only approximately by the displacements of the d iscre te  
elements,  consequently the most general  cr i ter ium of convergence of 
the d iscre te  element solution i s  the equality of the potential energy of 
the r ea l  system (U,) and that of the substitute system, obtained by 
assembling 'h" discre te  elements; thus 

n 
I 

= > Udiscrete,  

o r  considering the work of the external loads, equation (1) can be 
writ ten as 
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where 6 is the total displacement vector of the whole s t ructure  and (Pi 
defines the distortion of the s t ructure  due to unit load of coordinate 
"i" andPi is the generalized load vector a t  coordinate "i" in systemR, 
P, z. 

From equations (1 )  and ( l a )  follows that a s imilar i ty  between 
the final deformation of the discrete  elements and that of the correspond- 
ing region of the rea l  s t ructure  must  be maintained. 
motions (translations and rotations) of the node points must  be 
considered. 

Thus, a l l  possible 

Furthermore,  the deformation of the elements between node 
points must  also satisfy equations ( 1 )  and ( l a ) ;  consequently, the dis-  
placements within the discrete  element must be s imilar  to those of the 
corresponding part  of the rea l  s t ruc ture .  

Since s t r e s s e s  and s t ra ins  a r e  compatible and continuous within 
the continuum, compatibility of al l  s t r e s s  and displacements within the 
element and at the edges between adjacent elements must  be maintained, 
which is another important requirement to obtain convergence to the 
exact solution. 

Additional convergence c r i te r ia  particular to direct  stiffness 
ma t r ix  approach to dynamics of shells used in  this report ,  will be 
discussed in  Section VII. 

The accuracy of the discrete  element solution depends also upon 
how well the discrete  element idealizes the rea l  continuum. 
idealization of shell s t ructures  presented herein,  flat square elements 
a r e  used (Figure l) ,  which will be subjected to stretching and bending. 
F la t  tr iangular elements a r e  superior to rectangular ones in  case of 
idealization of shells of a rb i t r a ry  geometry, (Figure 2) ,  but the mathe- 
mat ica l  difficulties in  obtaining stiffness coefficients for tr iangular 
elements using the method applied in  this report  a r e  considerably 
grea te r ,  thus the development of stiffness coefficients for "compatible" 
t r iangular  d i scre te  elements is left to future investigations. 
t ransformation of moderately tapered trapezoid elements into equivalent 
square elements has been developed to extend the usability of the square 
elements .  

In the 

A simple 
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P(Z,ji,Z, t )  = Arbitrary Distributed Load 

Reference 
Coordinate 
System 

Triangular 
Elements 

‘Free 

Figure 1 .  Shell of Arbi t ra ry  Shape 

Node Points 

Node 

Figure 2. Cylindrical Shell of Arbi t ra ry  Shape (Fuselage) 
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Flat element representation of curved shel l  automatically vio- 
lates the continuity of slope requirement along the edges of adjacent 
elements. Folded plate idealization of cylindrical  shells,  however, 
has  indicated in  m o r e  conventional approaches,  l5 that  such an  idealiza- 
tion is permissible ,  especially in case  of static shel l  problems,  and by 
increasing the number of discrete  elements,  the solution converges to  
the exact one. 

If the shell  i s  relatively flat o r  the subdivision is relatively 
small ,  a rb i t r a ry  shel l  surfaces can be a l so  well approximated by 
rectangular discrete  elements. 
elements the geometrical  fitting problem is considerably reduced. 

By the introduction of double curved 

Especially in case  of dynamic problems, the proper  load 
representation, including that of iner t ia  forces  may  effect the conver- 
gence of the solution, i. e.  , the resu l t s  of d i scre te  element approaches,  
converge but not to  the exact solution. Thus the generalized forces  
applied at the node points must satisfy cer ta in  energy requirements  
which will be discussed la ter  in  detail.  

Finally, the accuracy of the solution can  be adversely effected 
by computer e r r o r s  inherent to  operations with la rge  ma t r i ces  (See 
Section X). 
symmetr ic ,  positive-definite ma t r i ces  in  band ma t r ix  form,  in the 
author 's  opinion, this approach is m o r e  suitable to handle complex 
dynamic problems of a rb i t r a ry  shells than others  previously d is -  
cussed. In addition, the ease with which any physically possible 
boundary condition can be handled, l6 should not be overlooked. 

Since direct  stiffness method yields well conditioned, 
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IV. DYNAMIC ANALYSIS O F  SHELLS B Y  DISPLACEMENT METHOD 

The differential equation of undamped motion of any structure,  
including shells of a rb i t r a ry  shape, can be writ ten in ma t r ix  form: 

where 6i represents  the vector of nodal displacements in a general 
orthogonal reference coordinate system X, Y ,  Z (Figures  1 and 2): 

- - -  

6i( t )  = i = l ,  2 , 3 .  . .  

and P . ( t )  represents  the vector of nodal forces  in  the same coordinate J 
system 

P.(t) = 
J (4) 

Fur thermore ,  [ K i j ]  i s  the square mat r ix  of stiffness coefficients of the 
total  s t ructure ,  expressed again in  the general reference coordinate 
system, and [ The two dots in equation ( 2 )  
indicate the second derivative with respect to t ime. Matrix 
{ '#(, - .  i - ( t ) }  represents  the inertia forces .  Because of i t s  importance 
in  solution of dynamic s t r e s s  problems in  shells of a rb i t r a ry  shape, it 
will be t reated in more  detail in Section VIII. 

ij] is the mass  matrix.  

1J  J 

In case  of f ree  vibration, the forcing function P . ( t )  is  zero,  J 
thus equation (2) becomes 



Let us assume that the stiffness and m a s s  mat r ices  a r e  already 
known. 
equation (5) in  the form of 

We investigate the solution of the homogeneous differential 

l 

{,E~} = { o ~ i }  s in(wt  t ai)  

{ o ~ i )  = { O V ~ }  sin(wt t ai)  
- 

I { o ~ i }  = {oWi} sin(w t t a i )  

- 1  . , . . . . . 

where {OVi}, {OVi}, {OWi} a r e  column mat r ices  of the amplitudes, w i s  the 
"natural" angular frequency of the f r ee  oscillation and ai is  an a rb i t r a ry  
phase angle. 

Substituting Equation (6)  into (5)  and performing cer ta in  mat r ix  
operation we obtain: 

[A]-' - X[I] = 0, (7 ) 

where [I] is  the identity matrix,  and 

obtained from: of o rde r  "rl' 17 Matrix [A] i s  the "dynamical matr ix"  

[A] = [ISij]-' . . I .  
I J  

The inverse of the "dynamical matr ix"  is: 

Equation (7 )  represents  the classical  eigenvalue problem of 
mat r ix  algebra'* the solution of which i s  readily obtainable by standard 
computer programs, if the order  of mat r ix  i s  not excessively large.  
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Usually the general solution of the homogeneous ma t r ix  equation 
( 7 )  i s  not of interest .  
consis ts  of natural  frequencies and natural  modes of the f r e e  oscillation 

The required information for  practical  purposes 

F 

- 
own, 

. . . . . .  
. . . . .  

r obtaining the eig 

-7 . . . .  
nv tors  (11) pertin nt t l l r  I I  igen ,a1 e s  

again standard programs a r e  available at  any l a rge r  computer center .  
The problems involved in computing eigenvalues and eigenvectors of 
l a r g e  dynamica? ma t r i ces  a r e  t reated la te r  i n  detail.  

To determine the displacement components produced by forced 
vibration Navier 's  solution i s  applied, which t ransforms the differential 
equation of the undamped vibration ( 2 )  into coupled algebraic equations, 
In o r d e r  to achieve this highly desirable  transformation, it i s  required 
that both the forcing and displacement function have the same  type of 
t ime dependency. 
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Thus i f  the a rb i t r a ry  time dependency of the concentrated nodal 
force i s  expressed as:  

r 

L J 

then the displacement vector must have s imi la r  expression: 

- 
or  taking, for  instance. the components of both vec tors  in the X 
direction , equations (12) and (13) can be writ ten as:  

and 

Similar expressions can be writ ten for  the other components of 
The determination of the constant the force and displacement vectors.  

in case  of a rb i t r a ry  loads will be discussed in Section VIII. 
im 

Substituting (1 2a) and (1 2b) into the differential equation of 
motion and canceling the tr ignometric factor which appears  in a l l  t e rms ,  
coupled algebraic equations, for any specific m value, a r e  obtained: 

f r o m  which the only unknowns {Dim) representing the amplitudes of the 
displacement component can be readily obtained, 
extremely well suited for  solution of coupled algebraic equations. 

since computers a r e  

- 
Substituting Uim into equation (12b) and carrying out the summa-  

tion, the displacement vector in  function of t ime in the TI direction i s  
obtained. 
components. 

Similar procedure i s  followed for the other displacement 



- Knowing the displacements U, v and id7 at each point, the internal 
fo rces  and s t r e s s e s  a r e  obtained f r o m  the classical  shell  theory’” 
(Figure 3):  

a2 F 
mx = -D - (3x2 

a 
qx = -D - v 2 F  3x 

a 
aY 

qy = -D - V 2 W  

- -  t u - av - (kz t vky);] 

-1 Eh a V  9ii 
n = -2[- t v - arr  - (ky t ukX)w Y 1-v sy 

where E is the modulus of elasticity, u is the Poisson’s  ratio,  D 
1 

f lexural  rigidity’” 2o and h the shell thickness k y  = - R z  Y R;J 
1 , k-=-  

(14) 

i s  the 

represent  the curvature in  
Equations (14) a r e  conveniently solved by finite difference’ representa-  
tion of the f i r s t  and second derivatives using computers again. 

and P directions respectively (Figure 3 ) .  

The key to the solution of the dynamic response of shells of 
a r b i t r a r y  shape is  the determination of the stiffness ma t r ix  [K..] of the 
total  s t ruc ture .  In addition to the already mentioned advantages of the 
d i rec t  ma t r ix  approach is the ease with which the stiffness ma t r ix  of 
the complete s t ruc ture  can  be obtained f rom the element stiffness 
ma t r i ces  p i j .  

1J  
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Let u s  assume that the element st iffness mat r ix  [p i j ]  in i ts  local 
coordinate system is  X, Y, Z (Figure 4 )  has  been already determined. 
(For  determination [ p a . ]  see  Sections VI and VII).  In o rde r  to express  
the element stiffness coefficients in the general  reference coordinate 
system, f i r s t ,  a coordinate rotation is required.  That i s  to say, the 
local coordinate system X, Y,  Z of each element will be rotated into a 
parallel  position with the reference coordinate system X, Y ,  Z of the 
total s t ructure .  
mat r ix  operation . 

1J 

- - -  
This can be  readily accomplished by the following 
13, 21. 

o r  since it is an orthogonal transformation, equation (15) can  be writ ten 
a s  

T 

where [%j]  i s  the element stiffness ma t r ix  in XI ,  Y ' ,  Z '  coordinate 
system (Figure 5), [TI i s  a t ransform ma t r ix  containing the directional 
cosines (Figure 5 ) :  

T1 

0 

- 
where subscr ipts  n = 1, 2, 3 ,  . . . represent  the number of node 
points of the element (which is  in  our  case  n = 1, 2, 3 ,  4), and 

T. = 
1 

PXX'  P xy ' Px z ' 0 0 0 

Pyx' PL,,,,' Pzz' 0 0 0 

Pzx' Pzy' Pzz' 0 0 0 

0 0 0 Pxx' Pxx' Pxz' 

0 0 0 Pyx' Pyy' Pyz' 

0 0 0 Pzx' Pzy' Pzz' 

Y Y  

where the subscr ipts  re fer  to the corresponding coordinate axis as 
shown in Figure 5. 
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The stiffness ma t r ix  of the total s t ruc ture  is obtained by alge-  
braic  addition of the overlapping stiffness coefficients of the elements.  
Since for even a relatively small  shell, the o rde r  of the stiffness 
ma t r ix  i s  quite high, automation in  compiling the stiffness ma t r ix  is a 
must,  which is discussed i n  Section X. 

It i s  expedient to take c a r e  of the boundary conditions of the 
individual elements before compiling the stiffness ma t r ix  [K..] .  
motion at  any node point is prevented by the support, the corresponding 
rows and columns of the element stiffness ma t r ix  must  be deleted. 
Failing to do so the resulting ma t r ix  is singular, and consequently 
cannot be inverted. 

If any 
1J 

Similar i s  the situation with flight s t ruc tures  i f  al l  rigid body 
motions a t  a l l  node points a r e  permitted.  
singularity of the stiffness mat r ices  of flight s t ructures ,  ar t i f ic ia l  
supports must  be introduced at cer ta in  points. 

In o rde r  to avoid the 

Equally simple i s  the treatment of elastic supports (Figure 6), 
since it i s  mere ly  required to add algebraically the stiffness factor of 
the elast ic  support to the corresponding stiffness element of the d is -  
c r e t e  element: 

Orthotropic shells (Figure 6), i f  the orthotropy i s  caused by 
corrugation o r  by small  stiffeners, can be t ransformed into isotropic 
shel ls  a s  follows: 22, 23  

where subscripts x and y and e re fer  to the elastic propert ies  in  X and 
Y directions and to those of the equivalent shell, respectively. 

Layered shells (Figure 7b) formed by curved "sandwich" panels 
can  be handled approximately in a similar manner,  that i s  to say, f i r s t  
an equivalent shell  thickness is  determined in X and Y direction a s  
follows: 
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he =I5 h (per unit width), 
n EO 

n = l ,  2, 3 . .  . . . 

where Eo represents  the reference modulus of elasticity, f rom which an  
equivalent moment of iner t ia  can be easily derived; m o r e  exact ways in  
handling thick layered and built-up shel ls  can be found in the pertinent 
l i t e ra ture .  24, 25 

The sign conventions for  translations,  r&a,tior,s and f ~ r  the conju- 
gate forces  and moments used in  this report  a r e  shown in Figure 4 fo r  
local and for general  reference coordinate sys tems.  

The stiffness coefficients of beams and bulkheads a r e  obtainable 
14, 2 1  f rom the l i t e ra ture .  
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V .  SMALL VS. LARGE ELEMENT BEHAVIORS 

The problems inherent to operations with l a rge  ma t r i ces ,  espe- 
cially in dynamics of shells,  might be considered a s  a ser ious limitation 
of d i scre te  element methods using l a rge  numbers  of smal l  elements to 
obtain an answer which has  *5% + 10% discrepancy in comparison with 
the "exact" solutions. 

Although considerable developments a r e  expected in the future  
in computer design as well a s  in ma t r ix  analysis,  in the coming 10 to 
15 yea r s  t he re  will be a pronounced need for  dras t ic  reduction of t h e  
s ize  of the "dynamical mat r ix . ' '  The use  of a 
method of substructures  26' 27 a r e  among the mos t  widely known methods, 
at the present,  to achieve this objective. 

and the 

Szilard2* has  proved that the use  of properly derived " la rge  
element" stiffness ma t r i ces  reduce the o rde r  of the stiffness ma t r ix  
of the total s t ruc ture  drastically.  With a smal l  number of la rge  ele- 
ments  the same  accuracy can be obtained as with a l a rge  number of 
small elements thus the economy of the use of l a rge  elements is evident 
(F igure  8).  
scr ibed deflection pattern is forced on the edges a s  is the c a s e  in small 
element behavior, (Sections VI and VII) but unit motions (translations 
and rotations) a r e  introduced at  a node points of the shell  element 
while holding the other node points fixed. 
and s t ra ins  within the element and a t  the edges is obtained by solution 
of the corresponding differential eqllatlons of the theory of elasticity.  

In the derivation of la rge  element stiffness ma t r i ces  no p re -  

The compatibility of s t r e s s e s  

It is interesting to note that the convergence charac te r i s t ics  of 
the l a rge  element approach a r e  opposite to those of small  element ap- 
proaches as shown in F igure  9 .  
s i ze  which resu l t s  in the best  accuracy with the smallest  number of 
d i sc re t e  elements,  the analytical determination of which requi res  ex- 
tended future r e sea rch .  

The re  is an optimum la rge  element 
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VI. DERIVATION O F  THE MEMBRANE PART O F  STIFFNESS 
COEFFICIENT S 

Although a survey of the l i terature*’ l3  indicates the availability 
of stiffness mat r ices  produced by stretching o r  bending the flat plate 
d i scre te  element, most  of them violate either the compatibility of 
s t r e s s e s , o r  displacements, o r  both. In the following, a new method 
which a s su res  complete compatibility, is given considering smal l  e le-  
ment  behavior. Basically the s a m e  approach can  be used for  la rge  
d iscre te  elements28 and for  double curved elements.  24 

Considering smal l  element behavior the stiffness coefficients, 
expressed in  a conveniently located local coordinate sys tem (Figure  4) ,  
a r e  obtained b y  prescr ibing cer ta in  edge displacements o r  edge 
s t r e s s e s  which resul t  in  motion (one motion at  a t ime)  of one node 
point while the other node points a r e  held fixed. 
tive forces  (and moments) assigned to the node points yield the coef- 
ficients p i j  of the stiffness mat r ix  of the element i n  the local coordinate 
system. 

The active and reac-  

In this report  displacement functions will be assigned to edges, 
thus the discrete  element is called a displacement model resulting i n  
lower bound approaches to the solution of s ta t ic  and dynamic s t r e s s  
problems.  

In addition to  the general  requirements concerning convergence, 
which were  discussed already in Section 111 the following specific r e -  
quirements  apply: 

a )  The f i r s t  cr i t ical  phase is the selection of suitable edge 
displacement functions, which a s su res  monotonic convergence to the 
exact solution a s  finer subdivisions a r e  used. 
a two dimensional continuum with a concentrated force resul ts  in  an 
exponential type deflection curve, 28 which in a smal l  region can be well 
approximated by straight l ines,  satisfying the general  energy require-  
ments  ( (1) and ( l a )  ) of the discrete  element solution; i. e.  , the potential 
energy of the original and the assembled s t ruc tures  wi l l  be the same  i f  
the number of subdivisions approaches infinity. 

The in-plane loading of 

b )  The second cr i t ical  s tep concerns the method used in  eval- 
uating the edge displacements.  

c )  The th i rd  concerns the assignment of edge forces  to node 
points s o  that the resulting stiffness mat r ix  is symmetr ical .  
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In o r d e r  to a s su re  complete compatibility of displacements and 
s t r e s s e s  within the element the differential  equations of equilibrium of 
shallow shells (Figure 3) in function of the three  displacement compo- 
nents have been derived: 

aZu i-v aZU itv aZv a, 
ax 2 ay  2 axay Y ax 2 t - -  - ( k x t v k  )- = - 2 t - -  - 

aZv i - v  aZv itv aZU aw (1-v2) 
a y 2  2 ax 2 axay a Y  

2 t - -  t- - (kytVkx)-  = - - 
Eh py 1 

au av 
a Y  

- (k, t v ky ) ax - ( ky t v kx ) - t ( kx2 t ky2 t 2vkxky ) w t 

I 
h2 4 Pz 
12 Eh 

t -v w = - ( 1  - v 2 )  s 

where k, and ky a r e  the curvatures in  X and Y directions, respectively. 

Since for the idealization of the shell  elements used in  this re -  
port  flat discrete  elements have been assumed (kx = 0 and ky = o ) ~  the 
resulting three  differential equations of equilibrium a r e  partially un- 
coupled yielding : 

(1 - v 2 )  
-2+--- - aZu I - ~  aZu i t v  aZv 

ax2 2 ay 2 axay 
- 

Eh pxs 
_ -  t -  

2 (1  - v 2 )  aZv I - ~  a i t v  aZu 
-2t-- t--- - ay  2 ax2 2 axay Eh py 

- -  

and 
4 DV w = pz , 

where 

Eh3 D =  
12(1-v2) 

19 represents  the flexural rigidity of the shell  o r  plate. 

Equation (21) is the differential equation of equilibrium of the 
two dimensional s t r e s s  problems, while equation (22 )  represents  the 
well  known plate equation” derived by Kirchoff. 
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By solving the differential equations of the two dimensional 
s t r e s s  problem2' for prescribed straight line edge motion, the required 
compatibility of s t r e s s e s  and displacements within the element a r e  fully 
satisfied. 

In o rde r  to a s su re  complete compatibility of edge displacements 
and edge s t r e s s e s  the method of images as shown in Figure 10, i s  in- 
troduced. Because of the mater ia l  continuity not only the displacements 
of node points of adjoining discrete  elements but the displacements along 
the lines connecting the node points a r e  the same.  
solving the differential equation of the two dimensional s t r e s s  problem 
of the 2a X 2b element (Figure l o ) ,  the compatibility of s t r e s s e s  along 
the edges is also ensured. 

Fur thermore ,  by 

In solving differential equations (21 a and b)  finite difference 
method has  been utilized. Symmetry of loading and s t ructure  could be 
exploited by using "guided" boundary conditions, as shown in Figure 11 
corresponding to - one type of motion allowed along the edge moved. 
F o r  finite difference subdivision an 8 X 8 mesh  s ize  w a s  used (Figure 
11).  The finite difference solution, which is symbolically shown in 
F igure  12 has yielded u and v displacements, f rom which the edge 
reactions have been obtained: 

nx=+($tv:) 1 -v 

nxy - - 2 ( l t v )  Eh ($+$) . 
Since l inear edge displacements have been described singularity 

was not a problem in obtaining the cor rec t  solution. 

The so  derived distributed edge forces  had to be assigned to the 
node points so that the resulting matr ix  is symmetr ical .  The conven- 
tionally used method which assigns statically equivalent concentrated 
fo rces  and moments to the nodes works only in  the simplest  cases  and 
resu l t s  i n  an  unsymmetrical  stiffness matr ix ,  which, especially in 
s t ruc tu ra l  dynamics, c rea tes  considerably difficulties i n  the matr ix  
and  computer operations, 
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In order  to achieve the required symmetry in  the stiffness ma-  

The possibility of achieving symmetry in 
t r i x  of the element, virtual work of the external forces  (active and 
reactive) has been utilized. 
s t i f fness  matr ix  via change i n  potentials of external forces  instead of 
the customary internal ones, as  f a r  as the author knows, has  been 
overlooked by previous investigators. 29 

Let us assume that the s t r e s s  field {ui} due to the imposed unit 
motion of node "i" and due to the l inear  edge displacement between 
nodes "i" and t l j t t  a s  shown in Figure 13a has  been already determined. 
The s t r e s s  field {ui} is an equilibrium field if we consider all the edge 
forces .  
node Itjtt  while holding the other nodes fixed (F igure  13)  we introduce 
a compatible s t r a in  o r  displacement field { E j ) .  

By introducing a small compatible vir tual  displacement at 

Virtual work is a scalar  product of two vectors having the same 
direction, which can be expressed in t e r m s  of internal potentials: 

where 
r 

Tax i  1 v  0 
aui - 
ax 
8 vi 

The s t ra in  mat r ix  of the compatible displacement field is: 

- ay  ax 
c a v j  + 9 

The integration shown in equation (25)  should be extended over 
the total volume of the element. 
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T l .  111t: - .._ virtual work or’ the edge forces  {Fi) and the compatible edge 

displacement {dj} a r e  obtained from: 

WKvirtual = $ (FTI {dj) 9 (28 1 
P 

where the matr ices  of distributed edge forces  and edge displacements 
a r e :  

The integration indicated in  equation (28) must be extended to all  edges 
of the discrete  element. 

Since the virtual work of the edge forces  must be equal to that 
of the internal forces ,  we may wri te :  

V P 

The virtual work of the concentrated force and moment at the 
node points must equal the virtual work of the internal forces ,  
consequently 

P i j  1 =J  {Ej)dV 

V 
( 3 1  1 

f r o m  which utilizing equation (30) the required stiffness coefficients 
can be obtained: 

but since 

the required symmetry of the stiffness matr ix  of the element has been 
established. 
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The results of these computations, expressed in the local coor- 
The dinate sys tem a r e  given for a square discrete  element in Table I. 

sign convention and the numbering sys tem of the motions and forces  
a r e  shown in Figure 4. 

Eight f r ee  body motions of the corner  nodes have been consid- 
e red .  The rotation around the Z axis,  due to the rigidity of the shell  to  
r e s i s t  such motion has been neglected. The f i r s t  subscript  indicates 
the location and direction of the force,  while the second r e f e r s  to the 
motion which has caused it. 

A lengthy computation, such a s  described above, always re -  
qu i res  intermediate checks in  o rde r  to avoid repealed e i - 1 ~ ~ ~ .  Thc 
f i r s t  check applied was satisfaction of equilibrium of the active and 
reactive forces  in form of: 

E X  = 0 ,  CY = 0 ,  CM, = 0 . ( 3 4 )  

The second check should consist of the pointwise satisfaction of Max- 
wel l ' s  law of reciprocity 

The symmetry of the stiffness matrix'3 represents  the third 
check. 
concentrated forces  assigned to  the node points. 
columns of the stiffness matrix must satisfy the macroscopic equilib- 
r i um condition discussed previously. 
check is the testing of the convergence character is t ics  of the discrete  
element solution against known analytical solutions a s  is discussed in 
Section XI of this report .  

While the fourth check is again an equilibrium check14 of the 
That is to say, the 

The final and most important 

Finally it should be mentioned that obtaining stiffness mat r ices  
by the above mentioned procedure is tedious, but computers can ease 
the burden of the task considerably. Since the numbers a r e  reusable, 
they should be computed only once for  any geometry o r  aspect ratio. 



3 2  

8 0.0073 -0.254 0. 1674 -0.254 -0.0073 0.079 -0. 1674 0. 429 



3 3  

VII. DERIVATION OF THE FLEXURAL PART O F  THE STIFFNESS 
COEFFICIENTS 

The procedure to obtain the stiffness coefficients due to bending 

The sma l l  element defor- 
of the flat discrete  elements is essentially the s a m e  as  described in 
the preceeding section for  in-plane motions. 
mation patterns due to unit nodal displacements a r e  affine to  (but not 
the same as) those of a beam subjected to bending, which can be de- 
scr ibed by cubic type polynominal expressions.  

In o rde r  to  avn id  any "gi iess ing" cnncerning the form of the de- 
flection patterns unit motions (lateral  translation and compatible rota-  
t ions) a r e  introduced at  the node points. Applying again the method of 
images (Figure 14) the edge reactions due to these motions a r e  obtained 
by solving the differential equation of the plate problem" and the result ing 
edge forces14 by a finite difference method (F igures  15 and 1 6 )  using 
1 0  X 10 subdivision. 

The differential equation of a plate in  finite difference fo rm can 
be expressed a s  

2 0 ~ 0  - 8 ( w l t w 2 t w g t w 4 )  t 2 ( w g S w 6 + ~ 7 t w g )  t 

t w9 t W l O t  w11 t w1z = 
X 2 ( P z =  1 )  

D 

Unit translation a t  node point " i l l  is obtained by a simple nor-  
malization process  

In o rde r  'to check the accuracy of the finite difference solution 
the  deflection surface wi(x, y)  has  been computed using Galerkin's  
method. 
lowing double Four i e r  s e r i e s :  

The deflected plate surface has  been approximated by the fol- 

m = 1, 3,5. . . n = 1, 3 , 5 .  . . 
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A concentrated load in magnitude of 4Pz  = 4 has been applied at  

A good 
the center (x = a,  y = a )  of the image plate of magnitude 2a X 2a size,  
and the resul t  has been normalized according to  equation (37).  
agreement between the analytical and finite difference solutions has been 
established. 

The compatible unit rotation of the plate has been obtained by 
prescribing the pertinent beam deflections at the edge of the plate and 
solving equation ( 3 6 )  for the prescr ibed edge displacements. 

The distributed forces  and moments along the edges of the dis-  
c re te  element have been computed using finite difference forms7 of 
equation (14). The assignment of the distributed edge forces  to  the 
corner  node points has followed the previously described method based 
on virtual work on the edge forces a s  given by equation ( 3 2 ) .  
ment patterns to  one specific application of virtual work concept a r e  
shown in Figure 18. 
rectangular discrete  element is given in Table 11. 

Displace- 

The bending pa r t  of the stiffness ma t r ix  of a 

The macroscopic equilibrium of the element in fo rm of 

EMx E 0;  ZMy E O ;  C Z  ? 0 ( 3  9) 

has  been again approximately satisfied. 

In dealing with a rb i t ra ry  geometrical  shapes the use of t rape-  
zoidal discrete  element i s  mandatory. 
can be approximated as shown in Figure 19. 

Trapezoidal d i scre te  elements,  

If the original s t ructure  is a plate, compatibility requirements 
of s t r e s s e s  and displacements within the element and at  the edges of 
the  adjoining element has been completely satisfied. 
however, compatibility of slopes at the edges is violated since curved 
surfaces  a r e  approximated by flat elements.  
compatibility can be removed only by introduction of curved elements.  

In case of shells, 

The violation of slope 
24 

Finally, in connection with development of the bending par t  of 
the  stiffness coefficients, the la rge  element behavior of discrete  shell 
elements should be mentioned. 
element behavior of a plate in bending resembles  that of a beam, while 
i t s  l a rge  element behavior resembles that of a beam on elastic founda- 
tion a s  shown in Figure 20. The convergence of the derived solution i s  
described in Section XI.  

As has  been discussed ea r l i e r  the small 
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x 

Prescribed Edge 

Figure 17. Unit Rotation of a Node Point 

edge forces a 

(b)  
Displacement Field (d j l  

Figure 18. Virtual Work (Bending) 
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Limit of approximation : 0.70s 2 6 1.0 
a2 

Figure 19. Approximation of Trapezoidal Discrete  Elements  

( 0 )  

Small Element 
( b )  

Large Elemenl 

Figure 20. Small vs .  Large Element Behaviors of Shells Subjected to  
Bending 
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VIII. ARBITRARY DYNAMIC LOADS AND INERTIA FORCES 

In most cases  the s t r e s s  analyst is confronted with the deter-  
mination of the dynamic response of shells of a rb i t ra ry  shape subjected 
to a rb i t r a ry  (in space and t ime) dynamic loadings. Because of the com- 
plexity of the problem either "equivalent" s ta t ic  loading o r  other type 
of crude approximations a r e  used. 

The matr ix  method described herein permi ts  the consideration 
of any a rb i t r a ry  loads, (including blast loads) regardless  of i t s  space 
and t ime variation. Let us discuss f i r s t  the t ime dependency of such 
d load. 

Equation (12) can be written in the following form: 

m 

where{g}im sin pmt represents the t ime dependent par t  of the dynamic 
force,  and 

m r  
Pm = T 

i s  the ci rcular  frequency of the Four ie r  expansion while (Ri) is the 
column vector of the generalized nodal forces .  

Any arb i t ra ry  time variation can be expressed by Fourier  sine 
s e r i e s ,  since by proper continuation of the forcing function even a non- 
periodic load can be made periodic. 
Using T = (10 + 15)to for the half period of expansion the effect of the 
fictitious negative load can be retarded long enough so  that i t  does not 
influence the dynamic response of the s t ruc ture  to the rea l  load. The 
validity of this statement w i l l  be proven by numerical  example in 
Section XI. 

In Figure 21 a blast load is shown. 

Following the rules of Four ie r  Ser ies  expansion of an a rb i t r a ry  
function f ( t )  the amplitudes of the t ime dependent par t  a r e  obtained 
from: 
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Fictitous Load 

/ 

+ pressure 

- t  - 
+ pressure 

1 
- t  

Fictitous Load t 
Po 

+ t  * .  - t  _-- L- I 
* 

- -  to - + T= (IO -c 15) to k- -T=  (IO -15) to +T=(IO-c15)to -+ 

i. 
Suction 

Figure  21. Four i e r  Approximation of a Blast Load 
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If the forcing function f ( t )  can not be expressed analytically o r  the eval- 
uation of the integral  in equation (42) i s  too t ime consuming numerical  
integrals can be used to advantage. 

The simplest  way to handle loads which a r e  distributed a rb i -  
t r a r i l y  in space is to ass ign concentrated forces  and moments to the node 
points which a r e  statically equivalent (force and moment) to  the arbi-  

a X b  
t r a r y  distributed loads acting on- surface of one element. 4 
approximation yields satisfactory resul ts  only i f  relatively la rge  num- 
b e r s  of elements a r e  used. 

This 

If the subdivision is coarse,  o r  a "large element' '  approach is 
used, the proper  representation of variable surface loads by generalized 
nodal forces  a r e  of increased importance.  
accuracy of the discrete  element solution of dynamic shel l  problems i s  
markedly improved by proper  load representation, which includes the 
iner t ia  forces .  

It can be s ta ted that the 

The components of the nodal forces  in the local coordinate sys-  
tem,  ( see  equation (40)  ) which a r e  equivalent to a rb i t r a ry  distributed 
loads acting on a discrete  shell element is obtained f rom virtual work: 

which in  case  of la te ra l  loading takes the fo rm of: 

where wj(x, y) i s  obtained f rom the vir tual  unit displacement of node "jl' 
in  the Z direction, while the other nodes a r e  held fixed. Since the r e -  
sulting deflected surfaces  considering smal l  element behavior, have 
been already obtained for determination of stiffness coefficients, the 
numerical  evaluation of the double integral  by computer is quickly 
achieved. In Table 111 u(x, y)  and v(x, y) values for unit in-plane motion 
a r e  l isted,  while Tables IV and V give the numerical  values of w(x, y) 
for  unit translation and for compatible unit rotation of the nodes, 
r e s pe ct ivel y . 

Since equation (43)  is not a s  sensitive to approximation of de- 
flected sur faces ,  a s  the determination of stiffness coefficients i s ,  usable 
values can be obtained fo r  the generalized nodal forces  by approximating 
t h e  a h v e  mentioned three displacement components by: 
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o r  

The previously described rotation of coordinate system will express  
the force components in the general  reference coordinate system. 

A similar procedure can be followed in  case of iner t ia  forces  
substituting 

into equation (43), where m represents  the mass  of the element pe r  unit 
a r e a  and the two dots a r e  the second derivatives with respect  to t ime, 
representing the acceleration of the s t ructure .  

Especially in case of f ree  vibrations the use of "consistent 
mass" matr ix ,  whose elements a r e  derived f rom the kinetic energy 
associated with the displacement of the shell  elements,  is of basic 
imp0 rtanc e .  

The coefficient N o i j  of [ m o i j ]  matr ix  (in local coordinate 
17, 30 sys t em)  a r e  obtained from 

where @i and @ a  a r e  displacement functions associated with the unit 
point displacement 6 i  = 1 and 6 j  = 1, respectively, when al l  other nodes 
of the element a r e  fixed. 

J 

Since @ i ( x , y )  and @ . ( x , y )  a r e  the very same displacement com- J 
ponents required for  the determination of elements of the stiffness 
mat r ix ,  their  values can be obtained either f rom Tables 111, IV and V 

eqfiaiiciis j44), (45) aiid (46) .  
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Again a rotation of the coordinate system s imi la r  to that used in 
case of stiffness coefficients w i l l  t ransform the consistent m a s s  matr ix  
f rom the local to the intermediate o r  general  reference coordinate 
systems:  

- 1  



47 

IX. AUTOMATION O F  THE COMPUTATION 

The elements ki j  of the stiffness ma t r ix  expressed in  the gen- 
e r a l  re fe rence  coordinate system can be easi ly  compiled into the stiff- 
nes s  mat r ix  [k..] of the ent i re  s t ructure  without resor t ing to tedious 
element by element input approach. F i r s t  [kij] ma t r ix  expressed in 
intermediate coordinate system i s  a l tered to take c a r e  of the boundary 
conditions as de scr ibed previously. Then a proper  numbering system 
i s  introduced, which would result  in a band matr ix ,  heavily populated 
in  the vicinity of the main diagonal. This can be achieved by: 
grouping of nodal points, and ( 2 )  using proper  sequential order  in 
numbering the displacements at each ~ l ~ d e  p ~ i n t .  

1J 

(1) proper  

No set  ru les  can be given for grouping of node points since i t  
depends la rge ly  on the geometry of the total s t ructure .  
cylindrical shells,  for  instance, meridional grouping i s  more  expedient 
than longitudinal; while longitudinal grouping might be superior for short  
cylindrical shells. 

In case  of long 

Within each group the u, v, w, ex, By, displacements a r e  col- 
lected point wise following a predetermined sequence (u ,  v, w, e,, ey). 
This procedure yields five band mat r ices  containing fully populated 
submatrice s. 

A descriptive flow diagram for automatic compiling the stiff- 
nes s  ma t r ix  i s  shown in  Figure 22. 

logically for compilation of the "consistent" m a s s  mat r ix  [ aS1 ij]. 
F igu res  2 3  and 24  show the flow chart  of computer solutions for forced 
and f r ee  vibration analyses respectively. 

The same flow chart  can be applied 

Eigenvalue, eigenvector and mat r ix  inversion computer routines 
for  la rge  ma t r i ces  have been checked and documented by Denver Re- 
sea rch  Institute under a NASA Research Grant. 31 
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Figure 22. Flow Chart fo r  Compilation of Stiffness Matr ix  
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Call  for  Eigenvector Routine 
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Eigenvalue Routine (Option) 
I I 

Number of Eigenvalues and 
Vectors 
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Figure 2 3 .  Flow Chart f o r  F r e e  Vibration Computation 
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Figure 24. Flow Chart for  Forced Vibration Computation 
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X. MATHEMATICAL PROBLEMS INHERENT TO LARGE 
MATRICES 

The algebraic manipulation of ma t r i ces  and mat r ix  equations 
presents  no problem for  solution of all the e lementary operations as 
well a s  for  the character is t ic  numbers or  eigenvalues. The methods 
a r e  numerous and well expounded in  the l i t e ra ture  and computer pro-  
g r a m s  a r e  plentiful. 31 

Reduction techniques, elimination methods, tr iangular factor - 
ing, diagonalization, and all the refinements of these methods for  
I'inding a mat r ix  inverse a r e  subject to large e r r o r s  because of simple 
round-off. Two methods customarily used to reduce this e r r o r  a r e  
column scaling (not suitable for a l l  mat r ices)  and the use of double- 
precision computer ari thmetic,  which more  than doubles the significant 
digits of each number but necessitates the use of subroutines which 
increase computation t ime on the order  of two to  three  t imes,  a 
prohibitively high pr ice  for most applications. In addition, valuable 
machine storage i s  lost. The direct  methods (non-iterative) of 
ma t r ix  inversion a r e  generally recognized to be well suited to com- 
puter techniques because they permit  the reduction of a matr ix ,  A, to 
an a r r a y  which can be saved f o r  use at any t ime of solution of the 
ma t r ix  equation, [A] {X} = {B} with different righthand sides.  
to  avoid slow iterative refinements, there  i s  a rea l  need for e r r o r  
analysis and the choice of computational methods which minimize the 
e r r o r s  that a r e  intr insic  to the computations in  solving the problem 
of the general  ma t r ix  of la rge  order .  The alternative Monte Carlo 
methods provide a simple computational approach to  the statist ical  
estimation of the elements of the inverse which a r e  not affected sub- 
stantially by round-off and truncation e r r o r ,  but the statist ical  var i -  
ation of the resu l t s  tends to be quite la rge  in most  ca ses  until refined 
by many additional random walks. Therefore ,  the technique i s  most  
widely used for  obtaining rough est imates  very quickly, and for single 
column inversions,  useful for  point loads. An iterative process  for 
improving the inverted mat r ix  to be computed to a s  high a degree of 
accuracy a s  is  required,  but for very  la rge  mat r ices  computer t ime 
fo r  handling the necessary  matr ix  subtractions and multiplications 
may  be extremely costly. 
l a rge  mat r ices .  
selecting a square submatrix of useful size the determinant of which 
is  non-vanishing may  be a problem. 
ations a r e  many and long and this i s  usually used a s  a las t  r e so r t .  

In order  

Partitioning techniques a r e  widely used for 
F o r  a non-definite and spa r se  mat r ix  the problem of 

In any case,  the computer oper-  
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The problems involved i n  solving fo r  the eigenvalues of a l a rge  
mat r ix  and the associated eigenvectors can be extremely expensive for  
a general  mat r ix  of ve ry  large order .  F o r  a ma t r ix  s ize  much g rea t e r  
than 150 X 150 auxiliary equipment must  be used for finding all  the 
eigenvalues of the system for  a general  matrix.  The accuracy p ro -  
blem is  much the same a s  for finding the inverse and the machine 
t ime for an i terative process  makes i t  feasible to solve for  only one 
o r  two cr i t ical  values in  this manner. 

We find, however, that for cer ta in  c lasses  of mat r ices ,  the ac-  
curacy, machine t ime, and machine s torage problems a r e  Considerably 
reduced. These mat r ix  character is t ics  a r e :  

1 .  

2. a positive-definite mat r ix  

3 .  

a r ea l  and symmetr ical  mat r ix  

a relatively sparse  mat r ix  heavily positioned along the 
main diagonals. 

The symmetry requirement i s  perhaps the most  vital in  p e r -  
mitting solutions of l a rge r  mat r ices .  
i s  considerably l e s s  with almost a l l  methods. 
tr iangular factoring technique t ime i s  cut considerably by virtue of the 
fact  that the upper tr iangular mat r ix  is also the t ranspose of the lower,  
This  fac t  coupled with a theorem which s ta tes  that the t ranspose of the 
inverted unit tr iangular matr ix  i s  equal to the inverse of the t ranspose 
permi ts  rapid calculation of the inverse matrix.  If a mat r ix  i s  r ea l  and 
symmetr ic ,  we can be assured of rea l  eigenvalues and of a correspond- 
ing set  of vectors  which a r e  orthogonal. 
provides an orthonormal set  of bas i s  vectors  i n  Euclidean n-space,  an 
important  fact  i n  eliminating the need for  brute force simultaneous 
equation approach used for locating the vectors  of the general  set  of 
homogeneous equation. 
success  for  a variety of mat r ix  methods, reduce the number of cal-  
culations and generally improve accuracy. 

The number of computer operations 
For  example, with the 

Normalization of the vectors 

The other requirements  stated guarantee the 

The mat r ices  resulting f rom the analysis described in the 
foregoing sections a r e  characterized by all of the above, and a r e  
solved m o r e  quickly and more  accurately because of this. 
e ra t ion  and partitioning may be necessary,  but the number of i terat ions 
will be reduced and the problem of selecting a leading sub-matr ix  which 
i s  non-vanishing for mat r ix  partitioning i s  no longer of consequence. 

Matrix i t -  
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In order  to i l lustrate the applicability and obtain information con- 
cerning the accuracy of the matr ix  solution of shells,  described herein,  
numerical  examples have been worked out and compared with known 
the o re  tical solutions. 

F i r s t  the validity of Four ie r  s e r i e s  representation of suddenly 
applied blast  load has  been checked using a one degree of freedom m a s s -  
spring system a s  shown in Figure 25. 
t ime-load function 

The a rb i t r a ry  continuation of the 

is  shown in Figure 25c. 
was computed f rom (42): 

Having only sine t e r m s ,  the Four ie r  coefficient 

The f i r s t  eight coefficients of the Four ie r  s e r i e s  expansion a r e  
tabulated in  Table VI. 

Thus the Four ie r  (sine) s e r i e s  expansion of the forcing function 
has the form 

f ( t )  = bn sin nt = PO [O.  045 s in  t - 
I 
n 

(52) 
-0. 079 s in  2t t 0. 105 sin 3t - 
-0. 124 s in  4t t 0. 151 sin 5t -0. 113 s in  6t t 

to. 091 s in  7t - 0. 063 sin st]. 

Expressing the deflections in a tr igonometric s e r i e s  s imilar  to 
the forcing function 



54 

Kip sec2  
M = 2 . 5  f t  

R = 750 Kip/ft 

(a 1 
Spring - Mass System 

0 

Q 

t T I I 
I- to =O.l  sec - - 

(b) 
Suddenly Applied Load 

( C )  

Arbitrary Continuation of Load 

Figure  25. Four i e r  Ser ies  Solution of Suddenly Applied Load on One- 
Degree System 
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2. 23 

1.11 

0.743 

0.558 

0.446 

0.372 

0.318 

0.279 

1 

n 

1 

2 

3 

4 

5 

6 

7 

8 

0.970 0. 07 

-0 .87  -0.247 

0. 72 0.497 

-0 .55  -0.773 

0. 28 1. 162 

-0 .16  -1. 060 

0.00 1.000 

0 . 1 2  -0 .780 

2 

6 - nn 
7 

154.29 

308.58 

462.87 

617. 16 

771.45 

925.74 

1080.03 

1234.32 

Table VI. Coefficients of the Fourier Series Expansion 

3 

cos  @ 

-0.900 

0. 623 

-0. 223 

-0.223 

0.782 

-0 .900 

1.000 

- .0900 

4 

sin @ 

0.433 

-0.783 

0.975 

-0.975 

0 .624 

-0 .433 

0.000 

0.433 

5 1 6 I 7 8 

2 
nn 
- 

0.639 

0.317 

0.212 

0. 159 

0.127 

0. 106 

0.091 

0.080 

9 

bn 
PO 

0.045 

-0. 079 

0. 105 

-0. 124 

0.151 

-0.113 

0.091 

-0.063 

Note: Numbers in circle  refer to the mathematical expression given in corresponding columns. 
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and substituting (52)and ( 5 3 )  into the differential equation of motion 

M? t Rx = f ( t ) ,  

the unknown amplitudes Xn have been obtained from 

f ( t )  xn = 
(R - n2M) s in  nt * 

(54) 

(55) 

The maximum displacement was hax = 0.  24 f t  while the 
rigorous solution to  the problem32 yielded xmax = 0. 28 f t ,  which is 
close enough for a l l  pract ical  purposes.  
ment can be achieved by using m o r e  t e r m s  and l a rge r  expansion 
period (T > - 15 to) .  

If desired,  a closer  ag ree -  

- 

The convergence of the membrane  par t  of the stiffness co- 
efficients has  been tes ted using a deep beam problem (Figure 26) which 
was compared with the rigorous solution obtained by Timoshenko. 
The convergence of the bending par t  of the stiffness coefficients was 
checked against a plate problem (Figure 27) with a known exact 
s o l ~ t i o n . ' ~  In both cases  the solutions have shown monotonic conver- 
gence towards numbers close to  the exact ones.  
divisions in both cases  could be considered relatively coarse ,  the 
discrepancy between exact and d iscre te  element solutions was of neg- 
ligible o rde r  of magnitude for  pract ical  purposes.  

33 

Although the sub- 

The f r e e  vibration of a cylindrical shel l  shown in Figure 28 has 
been computed, yielding, w = 1. 1 9  X l o 4  rad /sec  for  the lowest natural  
frequency, while the rigorous solution of this problem has yielded 
w =  1. 64 X l o 4  rad/sec.  
of "lumped" mass matrix, which a s  discussed ea r l i e r ,  may  cause one 
o r d e r  of magnitude e r r o r .  
neglect of curvature  effects, which will be t rea ted  in detail  in the 
Section XII. Static loadings have yielded m o r e  favorable resu l t s .  

The discrepancy was caused most ly  by the use 

The second cause of discrepancy is the 
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I+ 

+Discrete Element 
Solution = WA 

8 x 4 Discrete 
element solution 

( b )  
Deflections Along Centerline 

8 32 72 
I I I 
1 I 

I I I 1 c n  
100 

0 
0 20 40 60 00 

NUMBER OF ELEMENTS 

(C) 
Convergence 

Figure 2 6 .  Solution of a Deep Beam Problem 
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~ ~ 0 . 3  
E: 3.10'pri 

X 

Simply Supported 

Point 

(a) 
Simply Supported Square Plate 

Analytical 
Discrete Element 
Solution, 5 Ekmcntr 
In Quarter Plat. 

wmax = 0.00406 - 
D 

(b) 
Analytical Values of the Deflections 

Along the Center Lines 

301 25 

Extrapolated 

5 -  

- 
2 5 x 4  Total Number 

of Elements 

(C 1 
Convergence Characteristics of the 

Bending St i f f  ness Coo f f icients 

Figure 27. Solution of a Plate Problem 
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N=l 
I 

M = I  2 3 4 5  6 7 8 M=9 

IO 

I 

Pone1 dimensions: 
o = b =  1.00In. 
h =  0.100 in. 
E= 10.106 #/in2 
Y = 0.3 

hz h, 
\ I  

I 
N=7 
Section A - A  

hL, hx (Out of plane of paper) 

I 
28 = 30° 
8 = 1 5 O  

Figure 28. Cylindrical Shell 
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XII. THE EFFECT OF CURVATURE 

Introducing curved elements instead of the flat ones, the p re -  
viously derived stiffness coefficients of the element must  be augmented 
by a "curvature term":  

I I1 
p i j  (curved) = pij (flat) t p i j  (curvature effect). 

To derive exact values for the curvature effect, considerable 
effort i s  required, which was beyond the scope of this research .  
However, prel iminary currlputations ha.:e heen ca r r i ed  out to establish 
the order  of magnitude of the curvature effects. 
s imilar i ty  which exis ts  between the differential equation of plates on 
elast ic  foundation and that of thin shallow shells has  been utilized. 

F o r  this purpose the 

If kx = ky = k, the differential equation of thin shallow shell can 
be writ ten a s  

Pz w =  - 12( 1 -v2) k2 
h2 D '  v 2 v 2 w  t (57) 

while the differential equation of equilibrium of thin plates on elastic 
foundation has  the form of 

2 2  C E v v w + - w =  
D D y  

where c i s  the l'bedding'' constant. 

The comparison of equations (57) and (58) yields 

c = k 2 E h  (59) 

The la te ra l  deflection w(x, y) was computed using Galerkin' s 

method, l 9  in combination with method of images as shown in  Figure 14. 

The total energy of the plate of 2a X 2b dimensions can be 
expre s sed a s  : 

{ a j b ( D ~ 2 w  t cw)  6w dxdy = P 2  6w. 

0 0  



61 

The deflection w(x, y) has been represented in  form of s e r i e s :  

i n  which the functions f i ,  f z  . . . f n  were  chosen in  form of 

where 
7 

m = l , 3 , 5 . .  . n = 1 , 3 , 5 . .  . 
J 

After obtaining the deflection due to  Pz = 1 la teral  loading 
acting at x = a and y = b, the deflections of the node points have been 
normalized a s  previously de scribed. 

The resul ts  of this computation for two arb i t ra ry  curvatures a r e  
shown in  Figure 29 indicating a marked increase in the concentrated 
la te ra l  load required to produce unit translation of the node a s  curvature 
increases .  34 

Similar computations have indicated an increase in the gener- 
alized moments producing unit rotation at the node point a s  curvature 
has  been increased (F igure  30). 

It i s  evident f rom this preliminary investigation that the curva- 
t u re  effects can change the stiffness coefficients up to 10%- 2070, thus 
their  consideration i s  highly recommended if high accuracy should be 
ob t ai ne d. 

Another, probably more  important reason for the introduction 
of curved elements instead of flat ends, comes f rom the previously 
discus sed violation of slope compatibility at the adjoining edges. 
f lat  plate idealization c rea tes  significant angles between elements the 
customary neglect of the in-plane rotation stiffness properties of the 
discrete  elements i s  unjustified; whereas,  in case of curved elements, 
the slope continuity i s  more  completely satisfied, thus the effect of 
in-plane rotation i s  minimized. 

When 
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p9,9 

/ 
a = length of discrete element 1400D - { h = shell thickness a 2  

IOOOD 

800 D "I a 2  

' _  "h 
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Figure 29. Lateral F o r c e  Required f o r  Unit Lateral Translation of 
Node vs. a/h Ratio 

PIOJO 

a = length of discrete element 

h = shell thickness 
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2 0 D  

15D 
V.1982 
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.0999 
Ky=- a 

5 D l  
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Figure 30.  Bending Moment Required f o r  Unit Rotation of Node vs .  
a/h Ratio 
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XIII. FUTURE DEVELOPMENTS 

Although discrete  element method for determination of s ta t ic  
and dynamic response of shells is s t i l l  in i ts  infancy, the obtained r e -  
sults a r e  highly encouraging. 
two equally important a r eas :  
and (b) solution of problems inherent to operation with la rge  ma t r i ces .  

Future  development should cover the 
(a) improvement of stiffness mat r ices ,  

In the field of improvement of stiffness ma t r i ces ,  the present  
r e sea rch  has  indicated positive need for :  

1. 

2. 

3 .  

4. 

5. 

6 .  

7. 

8. 

9. 

10. 

Introduction of various aspect ra t ios  a/b. 

Development of stiffness coefficients for tr iangular curved 
elements having various aspect ra t ios .  

Derivation of readily usable coefficients for consistent 
m a s s  ma t r i ces .  

The use of symmetry and/or the method of substructures  
to reduce the order  of stiffness ma t r ix  for  f r e e  vibration 
problems. 

Derivation of improved stiffness coefficients for the 
solution of three-dimensional s t r e s s  problems in elastic 
c ontinuum. 

Stiffness coefficients for determination of t he rmo-s t r e s ses  

Extension of the stiffness ma t r ix  solution into non-linear 
regions covering (a) geometrical ,  and (b) mater ia l  non- 
l inear i t ies .  

Derivation of stiffness coefficients for thick shells.  

Use of la rge  elements.  

Verification of analytical resul ts ,  by experiments.  

Future  pertinent r e sea rch  and development in the field of math-  
ematical  and computer support should include: 

1. Development of computer programs for inversion of la rge  
(n > 1500) mat r ices .  

Eigenvalue and eigenvector solution of la rge  ma t r i ces .  

Computers with l a rge r  s torage capacity. 

- - 

2. 

3 .  



P r i o r  to any la rge  scale r e sea rch  funding of methods for the 
computer solutions of la rge  mat r ix  sys tems (inversion and eigenvalue- 
eigenvector programs) ,  a study should first be made of the computer 
industry to  determine their  fo recas t s  for computing t ime,  machine 
s torage and equipment costs  over the next few years .  Sufficient t ime 
and manpower has  been spent in  developing p rograms  for  standard 
hardware systems ( 3 2  k) over the las t  few yea r s ,  that only minimal 
advances a r e  being made at  present.  
these programs a r e  being developed they a r e  simultaneously being 
made obsolete by hardware advances in the computer industry. 

It should be understood that as 

Considerable par t  of the &wve iisted required improvements 
a r e  current ly  under study at  Denver Research Institute for the Flight 
Dynamics Laboratory of the Air Fo rce ,  Dayton, Ohio. 24 
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XIV. CONCLUSIONS 

The r e sea rch  described in  this report  has  shown the feasibility 

The cumbersome solution of complex differential equations 
of discrete  element approach t o  complex static and dynamic shell prob- 
l ems ,  
inherent to problems of this nature has  been eliminated and replaced 
by solution of simultaneous algebraic equations for which high speed 
electronic computers a r e  pr imari ly  suited. 

The key to the mat r ix  solution of complex s ta t ic  and dynamic 
shell problems i s  the derivation of suitable stiffness coefficients. 
new, improved compatible stiffness coefficients have Sccn clevaiuped 
for flat plate elements and the effect of curvature has  been briefly 
studied. The method applied i s  highly expandable and all s t r e s s  prob- 
l e m s  can be handled with basically the same approach. It follows an 
approach which i s  famil iar  to s t ructural  engineers,  ra ther  than that of 
s t ructural  r e sea rche r s ,  regardless  of the complexity of the problem. 
Although the numerical  computation of proper  stiffness coefficients has  
been found to  be a tedious operation, the resu l t s  a r e  reusable and can  
be furnished by r e sea rche r s  to the practicing engineer. 

Thus 

Limitations of the method along with the proposed improvements 
have been treated.  

The author believes that the discrete  element method will 
eventually replace all c lass ical  and semi-classical  methods p r e s -  
ently used by the designers for analysis of static and dynamic s t r e s s  
problems in  one, two and three dimensional s t ructures .  Consequently 
the designer will be able to concentrate more  on the "creative" aspects  
of the design leaving the tedious computations to  the computers.  
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